direct product, metabelian, soluble, monomial, A-group
Aliases: C6×C22⋊A4, C25⋊3C32, (C24×C6)⋊2C3, (C23×C6)⋊8C6, C22⋊2(C6×A4), C24⋊5(C3×C6), C23⋊4(C3×A4), (C22×C6)⋊3A4, (C2×C6)⋊2(C2×A4), SmallGroup(288,1042)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C24 — C23×C6 — C3×C22⋊A4 — C6×C22⋊A4 |
C24 — C6×C22⋊A4 |
Subgroups: 1044 in 324 conjugacy classes, 36 normal (10 characteristic)
C1, C2, C2 [×10], C3, C3 [×3], C22 [×5], C22 [×50], C6, C6 [×13], C23 [×5], C23 [×50], C32, A4 [×15], C2×C6 [×5], C2×C6 [×50], C24, C24 [×10], C3×C6, C2×A4 [×15], C22×C6 [×5], C22×C6 [×50], C25, C3×A4 [×5], C22⋊A4 [×3], C23×C6, C23×C6 [×10], C6×A4 [×5], C2×C22⋊A4 [×3], C24×C6, C3×C22⋊A4, C6×C22⋊A4
Quotients:
C1, C2, C3 [×4], C6 [×4], C32, A4 [×5], C3×C6, C2×A4 [×5], C3×A4 [×5], C22⋊A4, C6×A4 [×5], C2×C22⋊A4, C3×C22⋊A4, C6×C22⋊A4
Generators and relations
G = < a,b,c,d,e,f | a6=b2=c2=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, fcf-1=b, fdf-1=de=ed, fef-1=d >
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(7 10)(8 11)(9 12)(19 22)(20 23)(21 24)(25 28)(26 29)(27 30)(31 34)(32 35)(33 36)
(1 4)(2 5)(3 6)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 28)(26 29)(27 30)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 35)(8 36)(9 31)(10 32)(11 33)(12 34)
(7 35)(8 36)(9 31)(10 32)(11 33)(12 34)(19 27)(20 28)(21 29)(22 30)(23 25)(24 26)
(1 31 21)(2 32 22)(3 33 23)(4 34 24)(5 35 19)(6 36 20)(7 27 17)(8 28 18)(9 29 13)(10 30 14)(11 25 15)(12 26 16)
G:=sub<Sym(36)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (7,10)(8,11)(9,12)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,35)(8,36)(9,31)(10,32)(11,33)(12,34), (7,35)(8,36)(9,31)(10,32)(11,33)(12,34)(19,27)(20,28)(21,29)(22,30)(23,25)(24,26), (1,31,21)(2,32,22)(3,33,23)(4,34,24)(5,35,19)(6,36,20)(7,27,17)(8,28,18)(9,29,13)(10,30,14)(11,25,15)(12,26,16)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (7,10)(8,11)(9,12)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,35)(8,36)(9,31)(10,32)(11,33)(12,34), (7,35)(8,36)(9,31)(10,32)(11,33)(12,34)(19,27)(20,28)(21,29)(22,30)(23,25)(24,26), (1,31,21)(2,32,22)(3,33,23)(4,34,24)(5,35,19)(6,36,20)(7,27,17)(8,28,18)(9,29,13)(10,30,14)(11,25,15)(12,26,16) );
G=PermutationGroup([(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(7,10),(8,11),(9,12),(19,22),(20,23),(21,24),(25,28),(26,29),(27,30),(31,34),(32,35),(33,36)], [(1,4),(2,5),(3,6),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,28),(26,29),(27,30)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,35),(8,36),(9,31),(10,32),(11,33),(12,34)], [(7,35),(8,36),(9,31),(10,32),(11,33),(12,34),(19,27),(20,28),(21,29),(22,30),(23,25),(24,26)], [(1,31,21),(2,32,22),(3,33,23),(4,34,24),(5,35,19),(6,36,20),(7,27,17),(8,28,18),(9,29,13),(10,30,14),(11,25,15),(12,26,16)])
Matrix representation ►G ⊆ GL6(𝔽7)
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 0 |
0 | 0 | 0 | 0 | 0 | 6 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 6 | 0 | 0 | 0 | 0 |
3 | 0 | 6 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 0 |
0 | 0 | 0 | 0 | 0 | 6 |
6 | 0 | 0 | 0 | 0 | 0 |
0 | 6 | 0 | 0 | 0 | 0 |
4 | 2 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
6 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 5 | 6 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 6 | 0 | 0 | 0 | 0 |
3 | 0 | 6 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 2 | 0 | 0 | 0 | 0 |
6 | 3 | 3 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(7))| [3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,6],[1,0,3,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,0,0,0,0,6],[6,0,4,0,0,0,0,6,2,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,1],[6,0,0,0,0,0,0,1,5,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,3,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,6,0,0,0,0,2,3,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0] >;
48 conjugacy classes
class | 1 | 2A | 2B | ··· | 2K | 3A | 3B | 3C | ··· | 3H | 6A | 6B | 6C | ··· | 6V | 6W | ··· | 6AB |
order | 1 | 2 | 2 | ··· | 2 | 3 | 3 | 3 | ··· | 3 | 6 | 6 | 6 | ··· | 6 | 6 | ··· | 6 |
size | 1 | 1 | 3 | ··· | 3 | 1 | 1 | 16 | ··· | 16 | 1 | 1 | 3 | ··· | 3 | 16 | ··· | 16 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 |
type | + | + | + | + | ||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | A4 | C2×A4 | C3×A4 | C6×A4 |
kernel | C6×C22⋊A4 | C3×C22⋊A4 | C2×C22⋊A4 | C24×C6 | C22⋊A4 | C23×C6 | C22×C6 | C2×C6 | C23 | C22 |
# reps | 1 | 1 | 6 | 2 | 6 | 2 | 5 | 5 | 10 | 10 |
In GAP, Magma, Sage, TeX
C_6\times C_2^2\rtimes A_4
% in TeX
G:=Group("C6xC2^2:A4");
// GroupNames label
G:=SmallGroup(288,1042);
// by ID
G=gap.SmallGroup(288,1042);
# by ID
G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,514,956,3036,5305]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^6=b^2=c^2=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,f*c*f^-1=b,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations